Design of gRNA and construction of gRNA expression vectors

Originally developed by Hodaka Fujii on February 19, 2014
Modified by Hodaka Fujii on August 15, 2015

Construction of gRNA expression vectors is done basically according to the protocol described in Mali et al. (1) with some modifications.

1. Using the CRISPRdirect web tool (http://crispr.dbcls.jp), find candidate gRNA target sequences in the genomic region of interest. The output window shows 23 bp genomic sites of the form 5'-N20NGG-3' within your target region. These sites may reside on the + or - strand.

\[
\text{5'-} \text{NNNNNNNNNNNNNNNNNNNGG-3'}
\]

PAM

2. Synthesize gBlock as follows. Appropriate sites of restriction enzymes should be added for subcloning purpose.

TGTACAAAAAAAGCAGGCTTTAAAGGAACCAATTTCAGTCGACTGGATCCGGTA
CCAGGTCGGGCAAGGACAGGGGCTATTTCCCATGATTCTTATTTTCGAT
ATACGATAACAAGGCTTATAGAGAGATAATTGAAATTGGACTGAAACA
CAAGATATTTAGTACAAAATACGTGACGTAGAATAGTAATAATTTCTTGGGA
GTTTGCAGTTTTAAAATTAGTTTTTTAAAATGGACTATCATATGCTTACCCTAA
CTTGAAGATATTTCGATTTTTTTTTATATATATATTTTTGATGGAAAGGACGAAAAC
ACCCGNNNNNNNNNNNNNNNNNGGTTTTAGAGCTAGAAATAGCAAGTTA
AAATAAGGCTAGTCCGTTATCAACTTGAAATAGTGGCACCAGTCGGTG
CTTTTTTTTT

Green: 20 bp of the selected target sequence

Blue: guide RNA scaffold

Red: termination signal

3. Alternatively, incorporate 20 bp of the selected target sequence as highlighted here:
5‘-NNNNNNNNNNNNNNNNNGG-3’ into two 61-mer oligonucleotides as indicated below. The region marked in green corresponds to the above-mentioned 20-mer. The red region corresponds to reverse complements the green 20-mer.

4. Insert_F: 5’-

TTTCTTGCTTTATATCTTTTGAAAGGACGAAACACC

NNNNNNNNNNNNNNNNGG-3’

5. Insert_R: 5’-

GACTAGCCTTATTTTAACCTTTATTTCTAGCTCTAAAAC

NNNNNNNNNNNNNNNNNNNC-3’

6. Anneal the two oligos and extend these to make a 101 bp double-strand DNA fragment using Phusion polymerase.

7. Linearize the gRNA cloning vector (Addgene #41824) with Afl II and incorporate the 101 bp DNA fragment into the linearized vector using Gibson assembly.

8. Confirm the sequence of gRNA with M13 reverse primer.

9. For construction of retroviral vectors expressing gRNA, gBlock can be cleaved from a gRNA vector constructed using the above-mentioned gRNA cloning vector with appropriate restriction enzymes (eg. [Xho I + Hind III], Eco R I).

10. Insert the cleaved gBlock into pSIR-based self-inactivating retroviral vectors.

Vectors & Sites of insertion

- pSIR-neo (Addgene #51128): eg. [Xho I + Hind III]
- pSIR-GFP (Addgene #51134): eg. [Xho I + Hind III], Eco R I
- pSIR-DsRed-Express2 (Addgene #51135): eg. [Xho I + Hind III], Eco R I
- pSIR-hCD2 (Addgene #51143): eg. Eco R I

Note

Binding of the CRISPR complex may affect chromatin structure such as nucleosome positioning and abrogate normal genome activities such as gene expression. Although the effects of binding need to be tested empirically for each locus, the author's group has guidelines to avoid potential aberrant effects caused by binding of the CRISPR complex.

(a) For analysis of promoter regions near transcription start sites (TSSs), the gRNA binding site should be several hundred base 5’ to the transcription start site so that the
binding would not inhibit transcription or disrupt nucleosome positioning. In contrast, for identification of binding molecules of genomic regions with distinct boundaries such as enhancer or silencer, the binding site of gRNA can directly be juxtaposed to the regions because of less probability of inhibition of their function. (b) The binding site should not be conserved among species because conserved regions are often binding sites of conserved binding molecules. In this regard, however, since multiple gRNA can be generated easily, a trial-and-error approach can work.

References