## pDG\* One-Step Cloning Protocol

3'-CNNNNNNNNNNNNNNNNNNNNNNCAAA-5'

And:

5'-ACCGNNNNNNNNNNNNNNNNNNNNT-3'

If the first N on the top strand for each guide is a G, it should be excluded.

- The N's in the top strands comprise the guide sequences, which target the matching gRNA binding sequences followed by PAMs in the genomic DNA.
- The overhangs allow the oligos to match the cut sites in the pDG\* plasmids caused by BbsI digestion.
- The extra G/C in the first pair of oligos completes the U6 promoter, this doubles as the first base in the guide which is why it should be excluded if the guide starts with a G.
- 1 The extra GT/CA in the second pair of oligos completes the gRNA scaffold.
  - 1. Mix the following reagents in a PCR tube for each of the two inserts:

| Reagent                                 | Amount |
|-----------------------------------------|--------|
| MQ H <sub>2</sub> O                     | 6.5 μL |
| NEB T4 DNA Ligase Reaction Buffer (10x) | 1 μL   |
| bottom oligo (100 μM)                   | 1 μL   |
| top oligo (100 μM)                      | 1 μL   |
| NEB T4 Polynucleotide Kinase (10 U/μL)  | 0.5 μL |
| Total                                   | 10 μL  |

- ② T4 Polynucleotide Kinase phosphorylates the 5' end of each oligo to allow more efficient ligation when cloning into a plasmid.
- ① 2. Place each of the two mixtures in a thermocycler with the following parameters:

| 1 | 37 °C                    | 30 min |
|---|--------------------------|--------|
| 2 | 95 °C                    | 5 min  |
| 3 | Ramp to 25 °C @ 0.1 °C/s | ∞      |

- 37 °C for optimal T4 PNK activity, 95 °C to melt then ramp down to anneal.
- 3. Dilute the 2 sets of phospho-annealed oligos 1:125 with MQ H<sub>2</sub>O in a 1.5 mL tube

| Reagent                | Amount |
|------------------------|--------|
| MQ H <sub>2</sub> O    | 124 μL |
| phospho-annealed oligo | 1 μL   |
| Total                  | 125 μL |

4. Mix the following reagents in a PCR tube ::

| Reagent                  |             | Amount  |
|--------------------------|-------------|---------|
| MQ H <sub>2</sub> O      |             | 11.5 μL |
| pDG* plasmid             | (100 ng/μL) | 1 μL    |
| phospho-annealed oligo 1 | (1:125)     | 1 μL    |
| phospho-annealed oligo 2 | (1:125)     | 1 μL    |
| NEBuffer 2.1             | (10x)       | 2 μL    |
| DTT                      | (10 mM)     | 1 μL    |
| ATP                      | (10 mM)     | 1 μL    |
| NEB <i>Bbs</i> I         | (5 U/μL)    | 1 μL    |
| NEB T4 DNA Ligase        | (400 U/μL)  | 0.5 μL  |
| Total                    |             | 20 սԼ   |

- Dithiothreitol (DTT) is a reducing agent used to prevent the formation of disulfide bonds in the Ligase, allowing it to maintain its function.
- ② ATP is integral to the function of the reaction that the Ligase catalyses.
- ① 5. Place in thermocycler with the following parameters:

| 1 | 37 °C        | 5 min   |
|---|--------------|---------|
| 2 | 16 °C        | 5 min   |
| 3 | Go to step 1 | 5 times |
| 4 | 4 °C         | ∞       |

- Oycle between optimal temperature for *Bbs*I which cuts the plasmid open and T4 DNA Ligase (16 °C) which ligates the phospho-annealed oligos into those cut sites and destroys the *Bbs*I sites. Alternatively, the original pDG\* plasmid is re-assembled by the Ligase without insertion of the phospho-annealed oligos, in which case the plasmid is cut again in the next 37 °C step. 5 cycles is sufficient to get enough plasmid containing the custom phospho-annealed oligos.
- Transform Invitrogen Subcloning Efficiency DH5α Competent Cells with 5 μL of mixture, following the recommended protocol.
- Verify insertion of both guides are present in the plasmid by one of the following:
  - Digesting with any restriction enzymes that have new binding sites generated by the insertion of the guide.
  - Digesting with BbsI and another restriction enzyme present in the backbone.
  - Sequencing both inserts with **seq gRNA U6 V1**: 5'-GGTTTCGCCACCTCTGACTTG-3' and **bgh PA F**: 5'-TGCATCGCATTGTCTGAGTAGG-3'.