Molecular cloning of single CRISPR plasmid

Step 1: Order the following oligos:

Example target: 5' ... CCGAGAAGGTTGGCTGCGG... 3'

Forward primer: cgtc[20nt protospacer]

Reverse primer: aaac[reverse complement of 20nt protospacer]

Order:

gRNA-TOP: 5'- cgtcCCGAGAAGGTTGGCTGGGTG - 3'

gRNA-BOT: 5'- aaacCACCCAGCCAACCTTCTCGG - 3'

EcoRI-HH-<Gene>-Fwd: 5' - aaaGAATTC<NNNNNN>CTGATGAGTCCGTGAGGACG - 3'

This primer will be specific to each gRNA. <NNNNNN> is the reverse complement of the first 6 nucleotides of the gRNA protospacer. For the CCGAGAAGGTTGGCTGGGTG gRNA, this sequence will be <TCTCGG>, and the 'EcoRI-HH-<Gene-Fwd' primer will be

5'-aaaGAATTCtctcggCTGATGAGTCCGTGAGGACG-3'.

The following primers are common for all constructs:

HDV-Notl-Rev: 5' - aaagcggccgcGTCCCATTCGCCATGCCGAA - 3'

Citrine-ColonyPCR-Fwd: 5' - CACAAGCTGGAGTACAACTA - 3'

T7-seq-Rev: 5' - taatacgactcactataggg - 3'

Order and store $100\mu M/10\mu M$ dilutions at -20°C.

Step 2: Set up the gRNA protospacer annealing reaction:

5 μL	100 μM gRNA TOP
5 <i>μ</i> L	100 μM gRNA BOT
5 <i>μ</i> L	NEB 10x T4 DNA Ligase Buffer
35 <i>μ</i> L	Water
50 <i>μ</i> L	Total volume

Heat to 95°C for 5 minutes. Bring to room temperature on the bench for 30-45 minutes.

Annealed oligos: 5' - cgtcCCGAGAAGGTTGGCTGGGTG - 3'

Dilute this reaction 1:1000. This is your insert.

Step 3: Digest the shuttle vector plasmid:

x μL	6μg of DNA
6 μL	10x Cutsmart Buffer
$2 \mu L$	Bsal-HF enzyme
(52-x) μL	Water
60 <i>µ</i> L	Total volume

Digest at 37°C overnight (16-18 hours at least). Gel extract to obtain your shuttle vector. <u>Do not</u> CIP-treat. Ensure the vector concentration after elution is less than 50ng/µL (dilute if necessary).

Step 4: Ligate annealed oligos into the Shuttle vector:

1 <i>µ</i> L	Linearized Shuttle vector
2.5μ L	gRNA annealed primers (1:1000 dilution from above)
2μ L	NEB 10x T4 DNA Ligase Buffer
1 <i>µ</i> L	T4 DNA Ligase
13.5 <i>μ</i> L	Water
20 μL	Total Volume

Incubate at room temperature for 20 minutes, then transform 25μ L competent cells (*our lab uses homegrown competent cells*) with 5μ L of ligation reaction (*This can be changed to maintain a 1:5 ratio of ligation mix to competent cells*). Add 37.5μ L SOC medium (*1.5x volume of competent cells used*) and recover for 15 minutes at 37° C. Plate full volume on LB+Amp plates. Incubate plates at 37° C overnight.

(For first use after digesting the Shuttle vector, perform a "Shuttle vector only" negative control to test for digestion efficiency. Make sure you don't get any colonies. Repeat digestion if necessary.) Step 5: Amplification of HH-gRNAf+e-HDV precursor:

Pick individual colonies and swirl in 10μ L of SOC (in a PCR strip tube). Set up the following reactions:

Reaction 1

2.5 <i>μ</i> L	Swirled Culture
5 μL	EcoRI-HH- <gene>-Fwd</gene>
5 μL	HDV-NotI-Rev
2.5μ L	Taq Buffer
1 <i>µ</i> L	dNTPs
1.5 <i>μ</i> L	DMSO
$0.5 \mu L$	Taq Polymerase
32 <i>μ</i> L	Water
50 μL	Total Volume

In parallel, set up the following colony PCR to verify successful integration of the protospacer:

Reaction 2

1 <i>µ</i> L	Swirled Culture
$2 \mu L$	gRNA-TOP (10µM dilution)
$2 \mu L$	T7 seq Reverse
1 <i>µ</i> L	Taq Buffer
0.4μ L	dNTPs
0.6μ L	DMSO
0.2μ L	Taq Polymerase
12.8 <i>μ</i> L	Water
$20~\mu$ L	Total Volume

Run 2μ L of Reaction 1 and 20μ L of Reaction 2 on a gel. Reaction 1 should yield a ~215bp product, while Reaction 2 should yield a 690bp product (if the protospacer was successfully integrated into the shuttle vector). PCR purify the remaining 48μ L of Reaction 1 (for colonies that have a positive band for Reaction 2) and elute in 52μ L. Set up the following digestion reaction:

52 μL	PCR-purified product
6μ L	10x Cutsmart Buffer
1 μ L	EcoRI-HF enzyme
1 μ L	Notl-HF enzyme
$60 \mu L$	Total volume

Digest for 2 hours at 37°C. Gel extract. This is your "EcoRI-HH-gRNA-HDV-Notl" insert.

Step 6: Clone HH-gRNAf+e-HDV precursor into single CRISPR plasmid:

Set up the following digestion reaction:

$x \mu L$	6μg of single CRISPR plasmid
6 <i>µ</i> L	10x Cutsmart Buffer
1 <i>µ</i> L	EcoRI-HF enzyme
1 <i>µ</i> L	NotI-HF enzyme
(52-x) μL	Water
60μL	Total volume

Digest at 37°C overnight. Gel extract to obtain the CRISPR destination vector. Set up ligation at 1:3 molar ratio using this vector and the insert obtained in Step 5.

x μL	Linearized CRISPR destination vector
у <i>µ</i> L	Digested and purified HH-gRNA-HDV insert (from Step 5)
2 <i>µ</i> L	NEB 10x T4 DNA Ligase Buffer
1 <i>µ</i> L	T4 DNA Ligase
(20-x-y) μ	_ Water
20 µL	Total Volume

Ligate for 2 hours at room temperature. Transform 25μ L competent cells (*our lab uses homegrown competent cells*) with 5μ L of ligation reaction (*This can be changed to maintain a 1:5 ratio of ligation mix to competent cells*). Add 37.5μ L SOC medium (*1.5x volume of competent cells used*) and recover for 1 hour at 37° C. Plate and incubate at 37° C overnight.

The next day, validate colonies by colony PCR using Citrine-ColonyPCR-Fwd and 10μ M dilution of gRNA-BOT primers. Validate insert by sequencing and electroporate chick embryos at 2.5μ g/ μ L concentration.