Ann Hochschild Lab, Harvard Medical School

Bacterial two-hybrid assay reagents

Strain and plasmids

Strain	Relevant Details	Reference/Source
FW102 O _L 2-62	Bacterial-two hybrid reporter strain. FW102 containing an F'	Deaconescu et al.
	Kan bearing the plac O_L2 –62-lac Z fusion where the λCI	2002
	operator is centered at position -62 upstream of the	
	transcription start site	
Plasmids	Relevant Details	Reference/Source
pACλCI	P_{lacUV5} -directed synthesis of the λ CI protein	Dove et al. 1997
pACλCI-β-flap (831-1057)	P_{lacUV5} -directed synthesis of the λCI protein fused via three	Deighan et al. 2008
	alanines to residues 831-1057 of the β subunit of <i>E. coli</i> RNAP	
pBRα	P_{lacUV5}/P_{lpp} -directed synthesis of the full length α subunit of E .	Dove et al. 1997
	coli RNAP	
$pBR\alpha$ - $\sigma^{70}D581G$	$P_{\textit{lacUV5}}/P_{\textit{lpp}}$ -directed synthesis of the αNTD (residues 1-248 of	Kuznedelov et al.
	the α subunit of <i>E. coli</i> RNAP) fused directly to <i>E. coli</i> σ^{70}	2002
	region 4 (residues 528-613 of σ^{70}). The σ^{70} moiety also carries	
	the D581G substitution.	
pBRα-β flap (831-1057)	placUV5- and plpp-directed synthesis of the α NTD (residues	Deighan et al. 2008
	1-248 of the α subunit of <i>E. coli</i> RNAP) fused via three	
	alanines to residues 831-1057 of the β subunit of <i>E. coli</i>	
	RNAP.	

User notes

- \triangleright pACλCI-β-flap (831-1057) + pBRα- σ^{70} D581G = a positive control (about 800 MU β-gal activity in our hands with 20 μM IPTG)
- \triangleright pACλCI-β-flap (831-1057) + pBR α = a negative control (about 80 MU β-gal activity in our hands with 20 μM IPTG)
- your pBRα fusion protein plasmid + pAC λ CI = negative control 1
- \triangleright pBR α + your pAC λ CI fusion protein plasmid = negative control 2
- ▶ pBRα-β flap (831-1057) and pACλCI-β-flap (831-1057) are the 'source plasmids'- digest these with NotI-BamHI to generate a NotI-BamHI backbone for cloning your gene (gene fragment) of interest: The β-flap fragment (831-1057) is 682bp.
- For the positive control we routinely grow the overnight cultures with 20 μ M IPTG and use 20 μ M IPTG in the sub-cultures. However, some fusion proteins may be toxic; for these we suggest growing the overnight cultures without IPTG and testing various IPTG concentrations (up to 200 μ M IPTG) in the sub-cultures.
- NotI is a 8bp cutter 5'-GCGGCCGC-3'. Since your protein of interest is going to be on the C-ter of the fusion proteins add an extra base onto the NotI site to maintain the reading frame (e.g., 'A'). This new NotI site, GCGGCCGCA, is translated into a 3 x Alanine linker.

Ann Hochschild Lab, Harvard Medical School

Bacterial two-hybrid assay reagents

- The forward primer for cloning by PCR would look like: 5'-gaagGCGGCCGCA your seq in frame-3'
- Fig. 1. If cloning by PCR the reverse primer should incorporate a stop codon, and a BamHI recognition site (BstYI or BgIII are also compatible and can be cloned into BamHI-digested pACλCI-β-flap or pBRα-β flap backbones). The reverse primer would look like: 3'-your seq stop codon GGATCC gaag-5'

Sequencing primers

- pBRa_F (approx 150bp upstream of NotI site in the pBRα-Y vector)
 5'-gaacagegtacegacetggac-3'
- pAC-cI_F (approx 100bp upstream of NotI site in the pACλCI-X vector)
 5'-gatcagggatagcggtcagg-3'

References

- Dove, S. L., Joung, J. K., & Hochschild, A. (1997) Activation of prokaryotic transcription through arbitrary protein protein contacts. *Nature* 386, 627-630
- Deaconescu, A. M., Chambers, A. L., Smith, A. J., Nickels, B. E., Hochschild, A., Savery, N. J., & Darst, S. A. (2006) Structural basis for bacterial transcription-coupled DNA repair. *Cell* 124, 507-520
- Deighan, P., Diez, C.M., Leibman, M., Hochschild, A., and Nickels, B.E. (2008) The bacteriophage λ Q antiterminator protein contacts the β-flap domain of RNA polymerase, *PNAS* 105: 15305-15310
- Kuznedelov, K., Minakhin, L., Niedziela-Majka, A., Dove, S. L., Rogulja, D., Nickels, B. E., Hochschild, A., Heyduk, T., & Severinov, K. (2002) A role for interaction of the RNA polymerase flap domain with the sigma subunit in promoter recognition. *Science* 295, 855-857